
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Lawrence	
 Livermore	
 National	

Laboratory	
 is	
 operated	
 by	
 Lawrence	

Livermore	
 National	
 Security,	
 LLC,	
 for	

the	
 U.S.	
 Department	
 of	
 Energy,	

National	
 Nuclear	
 Security	

Administration	
 under	
 Contract	
 	

DE-­‐AC52-­‐07NA27344.	

	

	

	

L
L
N
L
-­‐
X
X
X
X
-­‐
X
X
X
X
X	

	

LLNL-­‐CONF-­‐578774	

	

	

Web-­‐based	
 Testing	
 for	
 an	

Environmental	
 Information	

Management	
 System	

	

	

	

E.	
 Barbosa	

Inter	
 American	
 University	
 of	
 Puerto	
 Rico	

	

G.	
 W.	
 Laguna	

Lawrence	
 Livermore	
 National	
 Laboratory	

	

	

	

	

August	
 31,	
 2012	

	

	

	

	

Society	
 for	
 Advancement	
 of	
 Chicanos	
 and	
 Native	

Americans	
 in	
 Science	
 (SACNAS)	
 National	
 Conference	

Seattle,	
 WA,	
 United	
 States	
 	

October	
 11,	
 2012	
 through	
 October	
 14,	
 2012	

	

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 2

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information,
apparatus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States government or Lawrence
Livermore National Security, LLC. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore
National Security, LLC, and shall not be used for advertising or product endorsement purposes.

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 3

Web-based Testing for an Environmental Information
Management System

Selenium and Python

Elizabeth Barbosa1
Inter American University of Puerto Rico, Bayamon, PR, 00957

Gary Laguna2

Environmental Restoration Department, Lawrence Livermore National Laboratory, Livermore,
CA, 97550

1 Computer Scientist, Environmental Restoration Department, LLNL, Inter American University of Puerto Rico
2 Computer Scientist, mentor Environmental Restoration Department, Lawrence Livermore National Laboratory, CA
August 6, 2012

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 4

Abstract

 As the World Wide Web has evolved, so have web-based applications. Early web applications were

relatively simple with limited variability and interactivity, but present day web applications are typically

comprised of hundreds to thousands of dynamic and variable software components. The magnitude and

scope of today’s web-based applications require testing tools that can operate in the web realm that are

flexible, repeatable, and can be automated. Testing is an essential step in the development process necessary

to validate software. The principle project for my 2012 summer internship at Lawrence Livermore National

Laboratory (LLNL) was to develop tests for TEIMS using Selenium. Selenium is an open source web-based

integrated testing tool and framework based on the associated language Selenese. TEIMS is an enterprise

system comprised of a collection of web-based applications and back-end database that support data

collection, reporting and, scientific findings for ERD.

I used Selenium to develop dozens of tests for TEIMS web applications. After completing the

development of a suite of tests for an application, I exported each suite to the Python language. I then

developed a shell script that allows all test suites to be run with a single command. The initial version of

this rollup script would run each test independently, with the result that each test required user

authentication to the web server. Subsequent versions of the rollup script overcome this drawback by

creating a single web-browser resource that is used to run each test. This resulted in a script that only

required a single user authentication to the web server, allowing all remaining tests to be run without

additional user interaction. The final outcome of this work turned testing for the TEIMS project from a

manual, time-consuming task to an easier to manage automated process. The result is powerful regression

testing with a simple terminal command.

Nomenclature

IDE = Integrated Developing Environment

TEIMS = Taurus Environmental Information Management System

ERD = Environmental Restoration Department

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 5

I. Introduction

World War II era operations (1940s) at the U.S. Navy NAS Livermore, contributed to environmental

contamination at the LLNL site. LLNL was established in 1952 as a national defense research and

development laboratory. Since the discovery of contamination in 1983, LLNL has actively pursued

environmental restoration. The TEIMS system has evolved to facilitate these efforts, starting with

predecessor applications developed in the 1980’s. TEIMS is a collection of web-based applications and

tools that have been developed through subsequent years. Software testing for web-based systems such as

TEIMS has lagged behind the explosive growth in size and complexity of the applications. Selenium is an

open source testing solution that is gaining in capability and popularity for web-based testing, which makes

Selenium a great choice to meet TEIMS testing needs.

II. Testing with Selenium IDE

 Software testing is a process conducted to provide stakeholders the assurance of software functionality.

Additionally, effective testing techniques are necessary to enhance, maintain, and validate software.

Historically, developers tested TEIMS applications and modules manually, which was a time-consuming

process providing limited coverage. This manual testing process had to be repeated for each software

release.

 As a first step toward automated testing, the Selenium IDE was used to create multiple tests for selected

TIEMS applications. The Selenium IDE is a complete integrated environment for developing selenium

tests. Implemented as a Firefox extension, the Selenium IDE facilitates the recording, editing and

debugging of tests. The IDE records tests in Selenese, a scripting language specific to Selenium. The

Selenium IDE is installed as an add-on to the Firefox browser downloadable from, seleniumhq.org.

 Selenium Features:

• Record and playback

• Intelligent field selection

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 6

• Auto complete for all common Selenium commands

• Walk through tests

• Debug and set breakpoints

• Save tests as Ruby, Python, C#, Java

• Option to automatically assert the title of every page

III. Creating a Test

Creating tests using the Selenium IDE is a straightforward process. During recording, the Selenium-IDE

will automatically insert commands into your test case based on your actions, see Figure 1.

Test Speed Control Slider: Adjusting this slider
allows control of how fast Selenium will cycle
through commands.

Run All Tests: Clicking on this button will run all
tests in the current test suite, left test case pane.

Run One Test: Clicking on this icon will run the
currently opened or selected test case.

Pause/Resume: This button allows a running test to
be stopped and subsequently resumed.

Run One Command: This button allows the test to
be “stepped” through one command at a time.

Record Button: This button turns the record mode
on or off. When recording, Selenium will record the
user’s browser actions.

Figure 1. Selenium IDE testing
framework environment.

Unknown
Formatted: Font:11 pt

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 7

Developing a new testing framework for TEIMS required more than just recording. The functionality of

the recorded tests needed to be extended by using Selenium commands. These commands are classified

into three types: Actions, Accessors, and Assertions.

• Action commands allow the web application to be manipulated. These commands are used to

perform actions such as click and select elements on the web page. Action commands that fail, or

have errors will abort the execution of the test case.

• Accessor commands are generally used to store process state in variables, which can then be used

with Assertions.

• Assertions are Selenese commands that verify test applications are doing what they are expected.

While developing test scripts, test cases are displayed in the test case pane, see Figure 2. This has two

tabs, one for displaying the commands in Selenese, while the other displays the tests in HTML. Test

commands can also be exported to a supported programming language by the framework.

When running test cases, error messages and information messages showing progress are displayed in the

log pane automatically. These messages are useful for test case debugging, see Figure 3.

Figure 2, Test Case Pane

Figure 3, Log Pane.

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 8

The Reference tab is the default selection when creating or modifying Selenese commands and

parameters in Table mode. While in Table mode, the Reference pane will display documentation on the

current command, see Figure 4.

IV. Debugging Selenium Tests

As with any software development activity, Selenium tests will occasionally need to be debugged. Below

are some guidelines for debugging Selenium scripts.

• General errors – errors can sometimes be fixed by adjusting the fast/slow bar at the left top of the

IDE. Some tests cannot be run fast due to the time required to retrieve and load data. If a test is

not working, try placing the speed marker underneath the (st) of “fast”.

• Toggle a Breakpoint in a test – this can be helpful when working with very long tests. Setting

breakpoints allows execution to be stopped somewhere inside the test script. Once stopped,

individual tests can be stepped through one at a time to help isolate and identify errors. A

breakpoint can be set by going to the desired line in the script and pressing (b) on the keyboard.

• Clear Start Point - pressing (s) in your keyboard sets the start point for the test script. This can be

useful with breakpoints, allowing the user to work on a particular section of the script without

having to start over from the beginning and its startup overhead such as authentication and data

loading.

• Run One Command – While debugging it is useful to use this button, this will allow you to “step”

through one command at a time.

Figure 4, Reference Pane.

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 9

• Execute - pressing (x) on a highlighted line of code causes that line to be executed. Alternatively,

double clicking on a line of code or “pressing the run one command” button will have the same

effect.

• Timing “errors”: a common error is caused by not giving the click and wait command enough

time to receive and load the data your application needs. The default timeout value can be

modified by going to the Options menu and changing the timeout value. Timing can also be set

for a particular script by adjusting the appropriate Selenese commands.

• Javascript - Some web applications have Javascript attached to input elements that execute upon

data entry. The keyUp command must be used to force this event. To use the Selenium KeyUp

command, the name of the input box should be used as the target, and use “10” for the value. This

sends the same ASCII command as if user had pressed the “enter” key.

• Back function – the Selenium IDE does not record the back function in the browser. One way to

simulate this behavior is by typing the “goBack: command in directly in Selenium. This will

simulate the user clicking the "back" button in their browser.

Figure 5, This is a test
created in Selenium.
Viewed as an HTML file.

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 10

V. Exporting Tests to Python

Once the test script is completed, the tests are exported to the Python language (Figure 6). To execute the

tests in Python requires some set up on the computer to be used for testing. In particular, the Python

Client Web Driver must be downloaded, installed and configured.

VI. Executing Selenium Tests

The Selenium Web Driver allows Selenium to be used with other languages. The Selenium Python Client

Driver is a Python language binding for Selenium (version 1.0 and 2.0). All Selenium downloads can be

found at seleniumhq.org.

• version 1.0 = Selenium RC

• version 2.0 = Selenium Web driver

1. Download the last version of Selenium Web driver (currently Python 2.25.0).

2. Extract the content of the downloaded zip file.

3. Copy the module with Selenium’s driver for Python (selenium.py) to the folder

C:/Python25/Lib (this will allow import directly to any script).

4. The module will be in the extracted folder - selenium-python-driver-client.

Figure 6. Exported test into
Python.

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 11

Installing the Selenium Web Driver provides the flexibility to run each test by just executing a script. The

web driver instantiates a browser container for running each test. The execution of tests one at a time can

still be a slow process when hundreds of web pages need to be tested.

VII. Regression Testing

The next challenge was to be able to run all tests with a single command. Developing a solution to this

problem would provide an automated process for regression testing that is flexible and durable.

Regression testing is the process of re-testing existing software’s functional and non-functional

capabilities after changes, such as enhancements, patches or configuration changes.

 PyUnit testing frameworks and modules are used in the process of wrapping these tests into a modern,

easy to use Test Suite. PyUnit is a framework, based on JUnit that makes it easy to write automated Test

Suites in Python. All of these components have been used to develop a powerful Python script that will

look for all tests and execute them each in turn (Figures 7, 8 & 9). Python scripts are pieces of code that

can be written and run without having to be compiled into the software.

Figure 7. First step of the shell script. This script
will run a search script, main program and
return.

Figure 8. Second step, shell script. Looks
through directory for all test cases.

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 12

VIII. Conclusion

Regression testing for TEIMS is now flexible, consistent, and easy to run, with continually improving

coverage. A terminal-based log records failure or success for each test and additional details for failure.

The result is powerful regression testing with a single terminal command.

Acknowledgments

I would like to thank my mentor Gary Laguna and also my technical mentors; Julia Britt, Francesca

Demello, Ahn Tu Quach and Suzie Chamberlain, for the support and guidance you have provided me.

Thanks to the Institute for Scientific Computing, ISCR for supporting my visit and especially the

organization, Lawrence Livermore National Laboratory. I would also thank my funding organization, the

National Nuclear Security Administration, NNSA Consortium, (SHPE) for providing the funds needed to

make this knowledge enriching experience possible.

References

Selenium IDE Retrieved June 4, 2012 from http://seleniumhq.org/

Selenium 2.0 Documentation (2011) Retrieved June 15, 2012 from Selenium Reference retrieved

June 18, 2012 from http://release.seleniumhq.org/selenium-core/0.8.0/reference.html

Figure 9. This program will collect all test cases
and execute them.

 Web-based Testing for an Environmental Information Management System

Lawrence Livermore National Laboratory 13

http://selenium.googlecode.com.svn/trunk/docs/api/py/index.html#python-client

Interface Selenium Retrieved June 20, 2012 from http://release.seleniumhq.org/selenium-remote-

control/0.9.2/doc/java/com/thoughtworks/selenium/Selenium.html

Git Hub Developer, Gits API Retrieved July 10, 2012 from

http://seleniumpython.readthedocs.org/en/latest/api.html

Python Beginners Guide May 7, 2012 Retrieved July 30, 2012 from

http://wiki.python.org/moin/BeginnersGuide

Selenium Python Bindings Documentation Retrieved July 28, 2102 from

http://selenium-python.readthedocs.org/en/latest/api.html

Python Bindings, A guide to using the python bindings for Selenium/Webdriver. (May 21,2012) Retrieved

August 2, 2012 from http://code.google.com/p/selenium/wiki/PythonBindings

PyPI - the Python Package Index Retrieved August 2, 2012 from http://pypi.python.org/pypi

Python 2.7.3 documentation, 25.3 Unittest- Unittest testing Framwork, August 8, 2012 Retrieved from

http://docs.python.org/library/unittest.html

Steve Purcell (August 10, 2001) PyUnit - the standard unit testing framework for Python retrieved July

31, 2012 from http://pyunit.sourceforge.net/

